Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 105.493
1.
Physiol Res ; 73(2): 173-187, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38710052

Sodium is the main osmotically active ion in the extracellular fluid and its concentration goes hand in hand with fluid volume. Under physiological conditions, homeostasis of sodium and thus amount of fluid is regulated by neural and humoral interconnection of body tissues and organs. Both heart and kidneys are crucial in maintaining volume status. Proper kidney function is necessary to excrete regulated amount of water and solutes and adequate heart function is inevitable to sustain renal perfusion pressure, oxygen supply etc. As these organs are bidirectionally interconnected, injury of one leads to dysfunction of another. This condition is known as cardiorenal syndrome. It is divided into five subtypes regarding timeframe and pathophysiology of the onset. Hemodynamic effects include congestion, decreased cardiac output, but also production of natriuretic peptides. Renal congestion and hypoperfusion leads to kidney injury and maladaptive activation of renin-angiotensin-aldosterone system and sympathetic nervous system. In cardiorenal syndromes sodium and water excretion is impaired leading to volume overload and far-reaching negative consequences, including higher morbidity and mortality of these patients. Keywords: Cardiorenal syndrome, Renocardiac syndrome, Volume overload, Sodium retention.


Cardio-Renal Syndrome , Homeostasis , Sodium , Water-Electrolyte Balance , Humans , Cardio-Renal Syndrome/metabolism , Cardio-Renal Syndrome/physiopathology , Animals , Homeostasis/physiology , Water-Electrolyte Balance/physiology , Sodium/metabolism , Kidney/metabolism , Kidney/physiopathology , Water-Electrolyte Imbalance/metabolism , Water-Electrolyte Imbalance/physiopathology , Water/metabolism
2.
Nat Commun ; 15(1): 3850, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719864

The K+ uptake system KtrAB is essential for bacterial survival in low K+ environments. The activity of KtrAB is regulated by nucleotides and Na+. Previous studies proposed a putative gating mechanism of KtrB regulated by KtrA upon binding to ATP or ADP. However, how Na+ activates KtrAB and the Na+ binding site remain unknown. Here we present the cryo-EM structures of ATP- and ADP-bound KtrAB from Bacillus subtilis (BsKtrAB) both solved at 2.8 Å. A cryo-EM density at the intra-dimer interface of ATP-KtrA was identified as Na+, as supported by X-ray crystallography and ICP-MS. Thermostability assays and functional studies demonstrated that Na+ binding stabilizes the ATP-bound BsKtrAB complex and enhances its K+ flux activity. Comparing ATP- and ADP-BsKtrAB structures suggests that BsKtrB Arg417 and Phe91 serve as a channel gate. The synergism of ATP and Na+ in activating BsKtrAB is likely applicable to Na+-activated K+ channels in central nervous system.


Adenosine Diphosphate , Adenosine Triphosphate , Bacillus subtilis , Bacterial Proteins , Potassium , Sodium , Adenosine Triphosphate/metabolism , Bacillus subtilis/metabolism , Sodium/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Potassium/metabolism , Crystallography, X-Ray , Adenosine Diphosphate/metabolism , Cryoelectron Microscopy , Binding Sites , Cation Transport Proteins/metabolism , Cation Transport Proteins/chemistry , Models, Molecular , Protein Binding
3.
Function (Oxf) ; 5(3): zqae018, 2024.
Article En | MEDLINE | ID: mdl-38711930
4.
BMC Plant Biol ; 24(1): 372, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714917

BACKGROUND: High-affinity potassium transporters (HKTs) are crucial in facilitating potassium uptake by plants. Many types of HKTs confer salt tolerance to plants through regulating K+ and Na+ homeostasis under salinity stress. However, their specific functions in cassava (Manihot esculenta) remain unclear. RESULTS: Herein, an HKT gene (MeHKT1) was cloned from cassava, and its expression is triggered by exposure to salt stress. The expression of a plasma membrane-bound protein functions as transporter to rescue a low potassium (K+) sensitivity of yeast mutant strain, but the complementation of MeHKT1 is inhibited by NaCl treatment. Under low K+ stress, transgenic Arabidopsis with MeHKT1 exhibits improved growth due to increasing shoot K+ content. In contrast, transgenic Arabidopsis accumulates more Na+ under salt stress than wild-type (WT) plants. Nevertheless, the differences in K+ content between transgenic and WT plants are not significant. Additionally, Arabidopsis expressing MeHKT1 displayed a stronger salt-sensitive phenotype. CONCLUSION: These results suggest that under low K+ condition, MeHKT1 functions as a potassium transporter. In contrast, MeHKT1 mainly transports Na+ into cells under salt stress condition and negatively regulates the response of transgenic Arabidopsis to salt stress. Our results provide a reference for further research on the function of MeHKT1, and provide a basis for further application of MeHKT1 in cassava by molecular biological means.


Arabidopsis , Manihot , Plant Proteins , Plants, Genetically Modified , Potassium , Salt Stress , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/metabolism , Manihot/genetics , Manihot/metabolism , Manihot/physiology , Plants, Genetically Modified/genetics , Potassium/metabolism , Salt Stress/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Gene Expression Regulation, Plant , Salt Tolerance/genetics , Sodium/metabolism
5.
J Am Chem Soc ; 146(19): 13588-13597, 2024 May 15.
Article En | MEDLINE | ID: mdl-38695646

Membrane channel proteins (MCPs) play key roles in matter transport through cell membranes and act as major targets for vaccines and drugs. For emerging ionic liquid (IL) drugs, a rational understanding of how ILs affect the structure and transport function of MCP is crucial to their design. In this work, GPU-accelerated microsecond-long molecular dynamics simulations were employed to investigate the modulating mechanism of ILs on MCP. Interestingly, ILs prefer to insert into the lipid bilayer and channel of aquaporin-2 (AQP2) but adsorb on the entrance of voltage-gated sodium channels (Nav). Molecular trajectory and free energy analysis reflect that ILs have a minimal impact on the structure of MCPs but significantly influence MCP functions. It demonstrates that ILs can decrease the overall energy barrier for water through AQP2 by 1.88 kcal/mol, whereas that for Na+ through Nav is increased by 1.70 kcal/mol. Consequently, the permeation rates of water and Na+ can be enhanced and reduced by at least 1 order of magnitude, respectively. Furthermore, an abnormal IL gating mechanism was proposed by combining the hydrophobic nature of MCP and confined water/ion coordination effects. More importantly, we performed experiments to confirm the influence of ILs on AQP2 in human cells and found that treatment with ILs significantly accelerated the changes in cell volume in response to altered external osmotic pressure. Overall, these quantitative results will not only deepen the understanding of IL-cell interactions but may also shed light on the rational design of drugs and disease diagnosis.


Ionic Liquids , Molecular Dynamics Simulation , Ionic Liquids/chemistry , Ionic Liquids/pharmacology , Humans , Aquaporin 2/metabolism , Aquaporin 2/chemistry , Water/chemistry , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Sodium/chemistry , Sodium/metabolism
6.
Physiol Rep ; 12(9): e16033, 2024 May.
Article En | MEDLINE | ID: mdl-38740564

The pathophysiology behind sodium retention in heart failure with preserved ejection fraction (HFpEF) remains poorly understood. We hypothesized that patients with HFpEF have impaired natriuresis and diuresis in response to volume expansion and diuretic challenge, which is associated with renal hypo-responsiveness to endogenous natriuretic peptides. Nine HFpEF patients and five controls received saline infusion (0.25 mL/kg/min for 60 min) followed by intravenous furosemide (20 mg or home dose) 2 h after the infusion. Blood and urine samples were collected at baseline, 2 h after saline infusion, and 2 h after furosemide administration; urinary volumes were recorded. The urinary cyclic guanosine monophosphate (ucGMP)/plasma B-type NP (BNP) ratio was calculated as a measure of renal response to endogenous BNP. Wilcoxon rank-sum test was used to compare the groups. Compared to controls, HFpEF patients had reduced urine output (2480 vs.3541 mL; p = 0.028), lower urinary sodium excretion over 2 h after saline infusion (the percentage of infused sodium excreted 12% vs. 47%; p = 0.003), and a lower baseline ucGMP/plasma BNP ratio (0.7 vs. 7.3 (pmol/mL)/(mg/dL)/(pg/mL); p = 0.014). Patients with HFpEF had impaired natriuretic response to intravenous saline and furosemide administration and lower baseline ucGMP/plasma BNP ratios indicating renal hypo-responsiveness to NPs.


Furosemide , Heart Failure , Kidney , Natriuretic Peptide, Brain , Sodium , Stroke Volume , Humans , Heart Failure/physiopathology , Heart Failure/metabolism , Male , Female , Aged , Pilot Projects , Furosemide/pharmacology , Furosemide/administration & dosage , Sodium/metabolism , Sodium/urine , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/metabolism , Kidney/metabolism , Kidney/physiopathology , Kidney/drug effects , Middle Aged , Natriuresis/drug effects , Diuretics/pharmacology , Diuretics/administration & dosage , Cyclic GMP/metabolism , Cyclic GMP/urine , Aged, 80 and over
7.
Methods Mol Biol ; 2799: 151-175, 2024.
Article En | MEDLINE | ID: mdl-38727907

In vertebrate central neurons, NMDA receptors are glutamate- and glycine-gated ion channels that allow the passage of Na+ and Ca2+ ions into the cell when these neurotransmitters are simultaneously present. The passage of Ca2+ is critical for initiating the cellular processes underlying various forms of synaptic plasticity. These Ca2+ ions can autoregulate the NMDA receptor signal through multiple distinct mechanisms to reduce the total flux of cations. One such mechanism is the ability of Ca2+ ions to exclude the passage of Na+ ions resulting in a reduced unitary current conductance. In contrast to the well-characterized Mg2+ block, this "channel block" mechanism is voltage-independent. In this chapter, we discuss theoretical and experimental considerations for the study of channel block by Ca2+ using single-channel patch-clamp electrophysiology. We focus on two classic methodologies to quantify the dependence of unitary channel conductance on external concentrations of Ca2+ as the basis for quantifying Ca2+ block.


Calcium , Patch-Clamp Techniques , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Calcium/metabolism , Patch-Clamp Techniques/methods , Animals , Ion Channel Gating , Humans , Sodium/metabolism
8.
Nat Commun ; 15(1): 3831, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714663

The Na+-Ca2+ exchanger (NCX1) is the dominant Ca2+ extrusion mechanism in cardiac myocytes. NCX1 activity is inhibited by intracellular Na+ via a process known as Na+-dependent inactivation. A central question is whether this inactivation plays a physiological role in heart function. Using CRISPR/Cas9, we inserted the K229Q mutation in the gene (Slc8a1) encoding for NCX1. This mutation removes the Na+-dependent inactivation while preserving transport properties and other allosteric regulations. NCX1 mRNA levels, protein expression, and protein localization are unchanged in K229Q male mice. However, they exhibit reduced left ventricular ejection fraction and fractional shortening, while displaying a prolonged QT interval. K229Q ventricular myocytes show enhanced NCX1 activity, resulting in action potential prolongation, higher incidence of aberrant action potentials, a faster decline of Ca2+ transients, and depressed cell shortening. The results demonstrate that NCX1 Na+-dependent inactivation plays an essential role in heart function by affecting both cardiac excitability and contractility.


Action Potentials , Calcium , Myocytes, Cardiac , Sodium-Calcium Exchanger , Sodium , Sodium-Calcium Exchanger/metabolism , Sodium-Calcium Exchanger/genetics , Animals , Myocytes, Cardiac/metabolism , Male , Sodium/metabolism , Mice , Calcium/metabolism , Myocardial Contraction/physiology , Myocardial Contraction/genetics , Heart/physiology , Humans , Mutation , CRISPR-Cas Systems
9.
J Hypertens ; 42(6): 1086-1093, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38690907

BACKGROUND: Early-life programming due to prematurity and very low birth weight (VLBW, <1500 g) is believed to contribute to development of hypertension, but the mechanisms remain unclear. Experimental data suggest that altered pressure natriuresis (increased renal perfusion pressure promoting sodium excretion) may be a contributing mechanism. We hypothesize that young adults born preterm will have a blunted pressure natriuresis response to mental stress compared with those born term. METHODS: In this prospective cohort study of 190 individuals aged 18-23 years, 156 born preterm with VLBW and 34 controls born term with birth weight at least 2500 g, we measured urine sodium/creatinine before and after a mental stress test and continuous blood pressure before and during the stress test. Participants were stratified into groups by the trajectory at which mean arterial pressure (MAP) increased following the test. The group with the lowest MAP trajectory was the reference group. We used generalized linear models to assess poststress urine sodium/creatinine relative to the change in MAP trajectory and assessed the difference between groups by preterm birth status. RESULTS: Participants' mean age was 19.8 years and 57% were women. Change in urine sodium/creatinine per unit increase in MAP when comparing middle trajectory group against the reference group was greater in those born preterm [ß 5.4%, 95% confidence interval (95% CI) -11.4 to 5.3] than those born term (ß 38.5%, 95% CI -0.04 to 92.0), interaction term P = 0.002. CONCLUSION: We observed that, as blood pressure increased following mental stress, young adults born preterm exhibited decreased sodium excretion relative to term-born individuals.


Premature Birth , Sodium , Stress, Psychological , Humans , Female , Male , Young Adult , Stress, Psychological/physiopathology , Stress, Psychological/urine , Adolescent , Sodium/urine , Prospective Studies , Premature Birth/physiopathology , Blood Pressure/physiology , Infant, Newborn , Creatinine/urine , Adult , Natriuresis
10.
BMC Nephrol ; 25(1): 152, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698368

INTRODUCTION: Dysnatremia is strongly associated with poor prognosis in acute kidney injury (AKI); however, the impact of sodium trajectories on the prognosis of patients with AKI has not yet been well elucidated. This study aimed to assess the association between sodium trajectories in patients with AKI and mortality at 30-day and 1-year follow-up. METHODS: This retrospective cohort study used data from Medical Information Mart for Intensive Care (MIMIC)-IV database, and patients diagnosed with AKI within 48 h after admission were enrolled. Group-based trajectory models (GBTM) were applied to map the developmental course of the serum sodium fluctuations. Kaplan-Meier survival curve was used to compare differences in mortality in AKI patients with distinct serum sodium trajectories. Hazard ratios (HRs) were calculated to determine the association between trajectories and prognosis using Cox proportional hazard models. RESULTS: A total of 9,314 AKI patients were enrolled. Three distinct sodium trajectories were identified including: (i) stable group (ST, in which the serum sodium levels remained relatively stable, n = 4,935; 53.0%), (ii) descending group (DS, in which the serum sodium levels declined, n = 2,994; 32.15%) and (iii) ascending group (AS, in which the serum sodium levels were elevated, n = 1,383; 14.85%). There was no significant difference in age and gender distribution among the groups. The 30-day mortality rates were 7.9% in ST, 9.5% in DS and 16.6% in AS (p < 0.001). The results of 1-year mortality rates were similar (p < 0.001). In adjusted analysis, patients in the DS (HR = 1.22, 95% confidence interval [CI], 1.04-1.43, p = 0.015) and AS (HR = 1.68, 95% CI, 1.42-2.01, p = 0.013) groups had higher risks of 30-day mortality compared to those in the ST group. CONCLUSION: In patients with AKI, the serum sodium trajectories were independently associated with 30-day and 1-year mortality. Association between serum sodium level trajectories and prognosis in patients with AKI deserve further study.


Acute Kidney Injury , Sodium , Humans , Acute Kidney Injury/blood , Acute Kidney Injury/mortality , Retrospective Studies , Male , Female , Sodium/blood , Middle Aged , Aged , Prognosis , Cohort Studies , Proportional Hazards Models , Kaplan-Meier Estimate
11.
Anal Chim Acta ; 1308: 342661, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38740461

BACKGROUND: Timely diagnosis and prevention of diseases require rapid and sensitive detection of biomarkers from blood samples without external interference. Abnormal electrolyte ion levels in the blood are closely linked to various physiological disorders, including hypertension. Therefore, accurate, interference-free, and precise measurement of electrolyte ion concentrations in the blood is particularly important. RESULTS: In this work, a colorimetric sensor based on a biphasic microdroplet extraction is proposed for the detection of electrolyte ions in the blood. This sensor employs mini-pillar arrays to facilitate contact between adjacent blood microdroplets and organic microdroplets serving as sensing phases, with any color changes being monitored through a smartphone's colorimetric software. The sensor is highly resistant to interference and does not require pre-treatment of the blood samples. Remarkably, the sensor exhibits exceptional reliability and stability, allowing for rapid enrichment and detection of K+, Na+, and Cl- in the blood within 10 s (Cl-), 15 s (K+) and 40 s (Na+) respectively. SIGNIFICANCE: The colorimetric sensor based on biphasic microdroplet extraction offers portability due to its compact size and ease of operation without the need for large instruments. Additionally, it is location-independent, making it a promising tool for real-time biomarker detection in body fluids such as blood.


Colorimetry , Electrolytes , Potassium , Colorimetry/methods , Electrolytes/chemistry , Humans , Potassium/blood , Sodium/blood , Chlorides/blood , Ions/chemistry
12.
Sensors (Basel) ; 24(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38732822

Magnetic resonance (MR) with sodium (23Na) is a noninvasive tool providing quantitative biochemical information regarding physiology, cellular metabolism, and viability, with the potential to extend MR beyond anatomical proton imaging. However, when using clinical scanners, the low detectable 23Na signal and the low 23Na gyromagnetic ratio require the design of dedicated radiofrequency (RF) coils tuned to the 23Na Larmor frequency and sequences, as well as the development of dedicated phantoms for testing the image quality, and an MR scanner with multinuclear spectroscopy (MNS) capabilities. In this work, we propose a hardware and software setup for evaluating the potential of 23Na magnetic resonance imaging (MRI) with a clinical scanner. In particular, the reliability of the proposed setup and the reproducibility of the measurements were verified by multiple acquisitions from a 3T MR scanner using a homebuilt RF volume coil and a dedicated sequence for the imaging of a phantom specifically designed for evaluating the accuracy of the technique. The final goal of this study is to propose a setup for standardizing clinical and research 23Na MRI protocols.


Magnetic Resonance Imaging , Phantoms, Imaging , Software , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/instrumentation , Sodium/chemistry , Humans , Sodium Isotopes , Image Processing, Computer-Assisted/methods , Reproducibility of Results
13.
Proc Natl Acad Sci U S A ; 121(19): e2318757121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38691591

How breathing is generated by the preBötzinger complex (preBötC) remains divided between two ideological frameworks, and a persistent sodium current (INaP) lies at the heart of this debate. Although INaP is widely expressed, the pacemaker hypothesis considers it essential because it endows a small subset of neurons with intrinsic bursting or "pacemaker" activity. In contrast, burstlet theory considers INaP dispensable because rhythm emerges from "preinspiratory" spiking activity driven by feed-forward network interactions. Using computational modeling, we find that small changes in spike shape can dissociate INaP from intrinsic bursting. Consistent with many experimental benchmarks, conditional effects on spike shape during simulated changes in oxygenation, development, extracellular potassium, and temperature alter the prevalence of intrinsic bursting and preinspiratory spiking without altering the role of INaP. Our results support a unifying hypothesis where INaP and excitatory network interactions, but not intrinsic bursting or preinspiratory spiking, are critical interdependent features of preBötC rhythmogenesis.


Action Potentials , Animals , Action Potentials/physiology , Models, Neurological , Neurons/physiology , Respiration , Nerve Net/physiology , Respiratory Center/physiology , Computer Simulation , Sodium/metabolism
14.
Mitochondrion ; 76: 101878, 2024 May.
Article En | MEDLINE | ID: mdl-38599300

Mitochondrial volume is maintained through the permeability of the inner mitochondrial membrane by a specific aquaporin and the osmotic balance between the mitochondrial matrix and cellular cytoplasm. Various electrolytes, such as calcium and hydrogen ions, potassium, and sodium, as well as other osmotic substances, affect the swelling of mitochondria. Intracellular glucose levels may also affect mitochondrial swelling, although the relationship between mitochondrial ion homeostasis and intracellular glucose is poorly understood. This article reviews what is currently known about how the Sodium-Glucose transporter (SGLT) may impact mitochondrial sodium (Na+) homeostasis. SGLTs regulate intracellular glucose and sodium levels and, therefore, interfere with mitochondrial ion homeostasis because mitochondrial Na+ is closely linked to cytoplasmic calcium and sodium dynamics. Recently, a large amount of data has been available on the effects of SGLT2 inhibitors on mitochondria in different cell types, including renal proximal tubule cells, endothelial cells, mesangial cells, podocytes, neuronal cells, and cardiac cells. The current evidence suggests that SGLT inhibitors (SGLTi) may affect mitochondrial dynamics regarding intracellular Sodium and hydrogen ions. Although the regulation of mitochondrial ion channels by SGLTs is still in its infancy, the evidence accumulated thus far of the effect of SGLTi on mitochondrial functions certainly will foster further research in this direction.


Mitochondria , Mitochondria/metabolism , Humans , Animals , Sodium/metabolism , Sodium-Glucose Transporter 2/metabolism , Glucose/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Homeostasis
15.
Int J Biol Macromol ; 267(Pt 2): 131477, 2024 May.
Article En | MEDLINE | ID: mdl-38604430

Salt stress severely limits the growth and yield of wheat in saline-alkali soil. While nanozymes have shown promise in mitigating abiotic stress by scavenging reactive oxygen species (ROS) in plants, their application in alleviating salt stress for wheat is still limited. This study synthesized a highly active nanozyme catalyst known as ZnPB (Zn-modified Prussian blue) to improve the yield and quality of wheat in saline soil. According to the Michaelis-Menten equation, ZnPB demonstrates exceptional peroxidase-like enzymatic activity, thereby mitigating oxidative damage caused by salt stress. Additionally, studies have shown that the ZnPB nanozyme is capable of regulating intracellular Na+ efflux and K+ retention in wheat, resulting in a decrease in proline and soluble protein levels while maintaining the integrity of macromolecules within the cell. Consequently, field experiments demonstrated that the ZnPB nanozyme increased winter wheat yield by 12.15 %, while also significantly enhancing its nutritional quality. This research offers a promising approach to improving the salinity tolerance of wheat, while also providing insights into its practical application.


Ferrocyanides , Salt Tolerance , Seeds , Triticum , Zinc , Triticum/drug effects , Ferrocyanides/chemistry , Zinc/chemistry , Zinc/pharmacology , Salt Tolerance/drug effects , Seeds/drug effects , Peroxidase/metabolism , Sodium/metabolism , Reactive Oxygen Species/metabolism
16.
Clin Endocrinol (Oxf) ; 100(6): 527-541, 2024 Jun.
Article En | MEDLINE | ID: mdl-38634410

OBJECTIVE: Both hyponatremia and hypernatremia have been reported to occur more frequently with higher ambient temperatures, although the underlying mechanisms are not well understood. Global temperatures are rising due to climate change, which may impact the incidence of dysnatremia worldwide. We aimed to identify, collate and critically appraise studies analyzing the relationship between climate measures (outdoor temperature, humidity) and serum sodium concentrations. DESIGN: Systematic review, reported in accordance with PRISMA guidelines. METHODS: MEDLINE and Embase were searched with relevant key terms. Studies assessing the effect on serum sodium measurement of elevated temperature or humidity versus a comparator were included. RESULTS: Of 1466 potentially relevant studies, 34 met inclusion criteria, originating from 23 countries spanning all inhabited continents. The majority (30 of 34, 88%) reported a significant association between outdoor temperature and dysnatremia, predominantly lower serum sodium with increased ambient temperature. Humidity had a less consistent effect. Individuals aged above 65 years, children, those taking diuretics and antidepressants, those with chronic renal impairment or those undertaking physical exertion had increased vulnerability to heat-associated dysnatremia. The risk of bias was assessed to be high in all but four studies. CONCLUSIONS: Higher ambient temperature is consistently associated with an increased incidence of hyponatremia. We infer that hyponatremia presentations are likely to rise with increasing global temperatures and the frequency of extreme heat events secondary to climate change. Evidence-based public health messages, clinician education and reduction in fossil fuel consumption are necessary to reduce the expected burden on healthcare services worldwide.


Climate Change , Hypernatremia , Hyponatremia , Sodium , Temperature , Humans , Hyponatremia/epidemiology , Hyponatremia/blood , Sodium/blood , Hypernatremia/epidemiology , Hypernatremia/blood , Humidity
17.
Sci Rep ; 14(1): 8590, 2024 04 13.
Article En | MEDLINE | ID: mdl-38615144

Hypertension (HPT) is the leading modifiable risk factor for cardiovascular diseases and premature death worldwide. Currently, attention is given to various dietary approaches with a special focus on the role of micronutrient intake in the regulation of blood pressure. This study aims to measure the dietary intake of selected minerals among Malaysian adults and its association with HPT. This cross-sectional study involved 10,031 participants from the Prospective Urban and Rural Epidemiological study conducted in Malaysia. Participants were grouped into HPT if they reported having been diagnosed with high blood pressure [average systolic blood pressure (SBP)/average diastolic blood pressure (DBP) ≥ 140/90 mm Hg]. A validated food frequency questionnaire (FFQ) was used to measure participants' habitual dietary intake. The dietary mineral intake of calcium, copper, iron, magnesium, manganese, phosphorus, potassium, sodium, and zinc was measured. The chi-square test was used to assess differences in socio-demographic factors between HPT and non-HPT groups, while the Mann-Whitney U test was used to assess differences in dietary mineral intake between the groups. The participants' average dietary intake of calcium, copper, iron, magnesium, manganese, phosphorus, potassium, selenium, sodium, and zinc was 591.0 mg/day, 3.8 mg/day, 27.1 mg/day, 32.4 mg/day, 0.4 mg/day, 1431.1 mg/day, 2.3 g/day, 27.1 µg/day, 4526.7 mg/day and 1.5 mg/day, respectively. The intake was significantly lower among those with HPT than those without HPT except for calcium and manganese. Continuous education and intervention should be focused on decreasing sodium intake and increasing potassium, magnesium, manganese, zinc, and calcium intake for the general Malaysian population, particularly for the HPT patients.


Hypertension , Selenium , Adult , Humans , Cross-Sectional Studies , Calcium , Manganese , Copper , Magnesium , Prospective Studies , Hypertension/epidemiology , Calcium, Dietary , Iron , Zinc , Sodium , Phosphorus , Potassium
18.
BMC Nephrol ; 25(1): 128, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605298

BACKGROUND: Considering no previous research into the utilization of ascending/descending ultrafiltration and linear sodium profiles in improving blood pressure among hemodialysis patients, the present study aimed to explore the effect of the A/D-UF along with linear sodium profiles on HD patients with hypotension. METHODS: Applying a crossover design, this clinical trial was fulfilled between December 2022 and June 2023 on 20 patients undergoing HD, randomized into two groups, each one receiving two intervention protocols, viz., (a) an intervention protocol in which the liquid sodium in the dialysis solution was linear and the UF profiling was A/D, and (b) a routine protocol or HD, wherein both liquid sodium and UF in the dialysis solution remained constant. The HD patients' BP was then checked and recorded at six intervals, namely, before HD, one, two, three, and four hours after it, and following its completion, within each session. The data were further statistically analyzed using the IBM SPSS Statistics 20 and the related tests. RESULTS: In total, 20 patients, including 12 men (60%) and 8 women (40%), with the mean age of 58.00 ± 14.54 on HD for an average of 54 months, were recruited in this study. No statistically significant difference was observed in the mean systolic and diastolic BP levels in the group receiving the A/D-UF profile all through the desired hours (p > 0.05), indicating that the patients did not face many changes in these two numbers during HD. Our cross-over clinical trial demonstrated a statistically significant reduction in symptomatic IDH episodes from 55 to 15% with the application of the A/D-UF profile (p < 0.05). CONCLUSION: The study demonstrated that the A/D-UF profile could contribute to the stability of blood pressure levels among HD patients, with no significant fluctuations observed during treatment sessions. TRIAL REGISTRATION: This study was registered in the Iranian Registry of Clinical Trials (no. IRCT20180429039463N5) on 07/01/2023.


Hypotension , Ultrafiltration , Male , Humans , Female , Adult , Middle Aged , Aged , Ultrafiltration/methods , Blood Pressure , Cross-Over Studies , Sodium , Iran , Renal Dialysis/methods , Hypotension/etiology , Dialysis Solutions
19.
Environ Monit Assess ; 196(5): 449, 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38609694

The work objective was to assess the ecological state of soils by changing the residual oil content and restoring catalase activity after remediation. The soils were selected in various ecosystems: a steppe of the Rostov Region (Haplic Chernozem), beech-hornbeam forests in the Republic of Adygea (Haplic Cambisols), and semi-desert of the Caspian province of the Republic of Kalmykia (Eutric Cambisols). Soil samples were polluted with oil at a concentration of 5% of the soil mass. After that, ameliorants (biochar, nitroammophoska, sodium humate, and Baikal EM-1) were introduced into the oil-contaminated soil. The catalase activity of Haplic Cambisols was stimulated only with the introduction of D2 biochar by 11% relative to the control, and in Haplic Chernozem, catalase was most stimulated with the addition of nitroammophoska D0.5 and D1 by 65% and 57% of the control, respectively. Nitroammophoska in all doses significantly stimulated the enzymatic activity, in Eutric Cambisols by four to six times compared to the control. The range of soil stability determined by catalase activity: Eutric Cambisols > Haplic Chernozem > Haplic Cambisols. Thus, it is most effective to apply biochar in doses of D and D2 and D0.5 and D nitroammophoska during the remediation of oil-contaminated Haplic Chernozem. For the remediation of Haplic Cambisols, it is effective to introduce biochar in dose of D2, and Eutric Cambisols-biochar and sodium humate in dose of D0.5 and nitroammophoska (all doses). The results of the study allow using catalase activity as a very informative and statistically significant diagnostical indicator of the health of oil-contaminated soils after remediation.


Charcoal , Ecosystem , Environmental Monitoring , Catalase , Nitrogen Compounds , Sodium , Soil , Humic Substances
20.
Biochemistry (Mosc) ; 89(Suppl 1): S262-S277, 2024 Jan.
Article En | MEDLINE | ID: mdl-38621755

Data on the structure of G-quadruplexes, noncanonical nucleic acid forms, supporting an idea of their potential participation in regulation of gene expression in response to the change in intracellular Na+i/K+i ratio are considered in the review. Structural variety of G-quadruplexes, role of monovalent cations in formation of this structure, and thermodynamic stability of G-quadruplexes are described. Data on the methods of their identification in the cells and biological functions of these structures are presented. Analysis of information about specific interactions of G-quadruplexes with some proteins was conducted, and their potential participation in the development of some pathological conditions, in particular, cancer and neurodegenerative diseases, is considered. Special attention is given to the plausible role of G-quadruplexes as sensors of intracellular Na+i/K+i ratio, because alteration of this parameter affects folding of G-quadruplexes changing their stability and, thereby, organization of the regulatory elements of nucleic acids. The data presented in the conclusion section demonstrate significant change in the expression of some early response genes under certain physiological conditions of cells and tissues depending on the intracellular Na+i/K+i ratio.


G-Quadruplexes , DNA/metabolism , Sodium/chemistry , Cations, Monovalent/chemistry , Thermodynamics
...